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ABSTRACT

Formulas for the cross—correlation and spectral density functions
of the solution of a general linear time-dependent stochastic equation
are derived. The analysis 1is based on a modification of the smoothing
method. The formulas are applied to the case of radiation of scalar
waves by a random point source in a three-dimensional time-dependent
random medium., The medium is assumed to be statistically homogeneous
and isotropic and to be statistically independent of the source. An
approximate expression for the power spectrum of the wave as a function
of the source-field point distance (or propagation distance) is obtained
for the case in which the characteristic frequency of the source is much
greater than that of the medium. This expression shows that as the
propagation distance goes to zero the wave spectrum approaches the source
spectrum; whereas as the propagation distance becomes infinite the wave
spectrum tends to a limiting form which is referred to here as the fully-
developed spectrum. It is also found that the total signal power is
conserved as the spectrum evolves. Numerical results obtained for the
case of a narrow-band source show a progressive broadening of the wave
spectrum with increasing propagation distance and/or with increasing

strength of the randomness of the medium, in agreement with observations.
PACS numbers: 05.40+3, 03.40Kf,41.10Hv , 43.28+h
This report was prepared as a result of work performed under NASA

Contracts No. NAS1-14101 and No. NAS1-14472 at ICASE, NASA Langley Research
Center, Hampton, VA 23665.



INTRODUCTION
Broadening of the frequency spectrum of an initially narrow-band
wave field is a phenomenon which is characteristic of wave propagation

__in real, time-dependent media such as the atmosphere or ocean. It is

sually a consequence of time variations in the medium through which

the wave propagates, but may also be due to interaction of the wave with a
time-varying boundary. Spectral broadening has been observed in the

case of both acoustic and electromagnetic waves, in which contexts it

is most often the result of either propagation through turbulence!’?

or scattering by the sea surface.?

The present investigation was’undertaken with the objeétive of
studying spectral broadening from a quite geﬁeral viewpoint; namely,
that of the evolution of frequency spectra of solutions of linear time-
dependent stochastic equations. The approach is based on the observa-
tion, stated in its most general terms, that an essential element in
the evolution of the spectrum of the solution u of an equation having
the form of Eq. 1 arises 'when the operétor L does not ﬁécessarilj o
commute with translation operators in time. A general analysié incor;
porating this idea is carried out in Sec. I; the problem of spectral
broadening of waves propagating in a random medium is then treated in
Sec. II as an application.

The general analysis is based.on the smoothing method," modified
to include the case in which f (referring again to Eq. 1) as well as
L is random. A key assumption is that f and L are statistically-
independent, which, in terms of spectral broadening of waves, is

equivalent to assuming that the source of the waves 1s statisti-

cally independent of the mechanism giving rise to the spectral




broadening. This assumption would appear to be a reasonable one in most
practical situations of interest.
Previous theoretical investigations of speétral broadening of waves
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propagating in random media have been carried out by Howe,® Fante,®>
Woo, et al.® Howe derived a kinetic equation and used it to study the
effect of the random velocity field on the frequency spectrum of an
acoustic wave propagating in a turbulent fluid. Fante used transport
theory to study frequency spectra‘of beamed waves propagating in a tur-
bulent atmosphere. The analysis of Woo, et al. (see also Ref. 9, p. 422)
is based on the parabolic equation. Howe treated the caée of an isotropic
time~dependent turbulence field, whereas both Fante and Woo, et al. assumed
that the time variations of the medium were the result of a steady mean
wind convecting a "frozen'" turbulence field in a direction transverse to
the beam. The results of both Howe and Fante indicate that the character-
istic width of the wave spectrum increases as some power of the propagation
distance. The results of Woo, et al. are given in a somewhat more compli-
cated form, but seem to show a similar effect. In contrast, the present
results indicate that, at least in the case of high-frequency waves, the
spectrum approaches a limiting form (the fully-developed spectrum) with
increasing propagation distance.

The problem of spectral broadening has also been discussed from a

0

theoretical viewpoint by Adomian,’® and has been treated in a recent paper

by Kuznetsova and Chernov. !

Related work, concerned mainly with spectra
of scattered waves and with spectra of amplitude and phase fluctuations of

waves propagating in random media, can be found in Refs. 12 -18.




I. GENERAL FORMULATION

A. Equations for u and u

We begin by considering a general stochastic equation of the form
lu=f, 1)

where L 1is a linear operator on a vector space, u 1is an unknown
vector, and f is a given vector. The operator L is assumed to be
random; i.e., L 1is assumed to depend on a parameter a which is an
element of a sample space A. The space A, together with a o-algebra
of subsets and a probability measure, forms a probability space. The
vector f is also random; however, f 1is assumed to be statistically
independent of L. Thus, f may be regarded as being dependent upon
a parameter b ranging over a different sample space B which, together
with its own o-algebra of subsets and probability measure, also forms a
probability space.

It .is clear that the solution u of Eq. 1, as well as functions of
it, will depend on both a and b. (The dependence on the parameters
a and b of the various.quantities appearing in this analysis will
not, in general, be explicitly indicated.) It will be necessary, there-
fore, in what follows to distinguish between ensemble averages over the

space A, which will be denoted by < > and averages over B, denoted

A’

by <> An average over both A and B (i.e., an ensemble average

B’
over the product sample space AXB) will be denoted simply by < >.

te th lly < >=<< >35> =<< > > ,
We note at generally e BA
In order to solve Eq. 1 it is convenient to assume that L depends

on a real parameter €, and that, in a neighborhood of €=0, the

expansion
L=L,+€L, +e’L, + === (2)
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is valid. The operator Lo is assumed to be determinatg (i.e., non-
random) with a known inversé; whereas Ll, Lz’ etc. are generally

assumed to be random. Approximate equatioﬁs, falid whén. € is small,

can now be obtained for u and 1, where u = <u>, and u = u-<w, .
The procedure is entirely analogous to that described by Keller (see also

Ref. 4). It is only necessary to keep in mind that since f 1is inde-

pendent of a it is unaffected by averaging over A. For the case when

<L1>A = 0, which is usually the case in practice, the results are
. " _ ‘
L +e2(<L > -<L L > =f
[o (2A 10L1A)]“ s 3
-~ -1, =
=-egL, 'L u. 4
u 0o 1 (4)

Terms of order €® have been dropped from Eq. 3; terms of order ¢

2
have been dropped from Eq. 4.

In the special case in which £ 1is determinate, the quantities u
(which'is then also determinate) and u cofrespond respectively to the
mean and fluctuating fields. 1In that context the type of approach
leading to Eqs. 3 and 4, which involves obtaining separate equations

for the mean and fluctuating fields, is referred to as the smoothing

method by Frisch.*

B. Equations for the correlation and spectral density functions

We consider now the case in which u and £ are real-valued scalar
functions of X and t (substantially the same analysis as that which
. follows applies in the case of vector functions), where d>5[= (xl,"',xn)]
is an n-dimensional spatial coordinate and t is time. Only the case of

free-space propagation will be considered here, and hence the coordinates

-



xl,-~~,xn,t are unbounded.' ﬁe assume that <L1>A==O » so that the
equations for u and U are given by Eqs. 3 and 4. We assume also
t-hat <f>B =0. -

We shall be concerned in the remainder of this paper only with random
Processes which are stationary in time. (By stationary we mean stationary
in the wide sense; i.e., that correlation functions of the form given by
Eq. 16 are independent of t.) In order to ensure that u(tnﬁ) is
stationary in time, it will be necessary, in addition to assuming that
f(t,z) is stationary in time, to impose some conditions on the operators

L L;, L2, etc. We shall assume here that the operators Lo,<L1L;1L1>A s

o’

and <L2>A commute with translation operators in time. Then the operator
M will also commute with translation operators in time, where M is the

operator appearing in Eq. 3; i.e.,

M=Lo+eX(<L,>, - <L1L;lL1>A) . &)

A

That these assumptions are sufficient for our purposes will become
clear as the analysis proceeds. It should be noted that these assump-
tions are not so restrictive as to exclude, for example, the case in
which L dis a linear differential operator with stationary coefficients.
(The questién of temporal stationarity of random linear systems has
been discussed in more detail by Vasholz.??)

We assume next that the operator L;l can be expressed in‘terms of

)

a Green's function; i.e., we assume that there exists a function Go(t’§?25

which satisfies, along with appropriate initial and/or boundary conditions,

" the equation

LG,y (£, %, 5') = 8()8(x-x") . (6)
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Then L;l can be expressed in the form

Lo w(t,x) = [[Golt = t', x, x )w(t', x")dt dx', 1)

where w(t,;‘s) is any function for which the integral exists. (Here, and

henceforth, an integral sign without limits denotes an integral from

-1
-® to +®,) Similarly, we assume that the inverse operator M

exists and that it can be expressed in terms of the Green's function

G(t,ﬁ}s, 35,'); i.e., we assume that G i1s a solution of
MG(t, x, x') =8(t)8(x-x"). ' (8)
Then the solution of Eq. 3 can be written
G(t,g;)= ffG(t—t',zcv,ﬁ')f(t',é')dt'dzcv'. (9)

- By making a change of integration variable we can write Eqs. 7 and 9

in the alternate form

Lolw(t,) = [[Go(t', x, x"Iw(t-t', x') de'dx’, (10)
.L—l(t,zi)=ffG(t',z;/,3£')f(t—t',a:,')dt'd&(,'. (11)

Note that it is the assumption that the operators Lo and M
commute with time translations that allows the Green's functions G,
and G in Eqs. 7 and 9 to be written as functions of the difference

t-t' instead of in the more general form Go(t,t',zg,gg') and G(t,t',x,x').

Xy, X
A’ M

This property of the Green's functions is necessary for the stationarity

of u. Note also that both G, and G are determinate functionms.




Operating with L; on u, as given by Eq. 9, yields

._"Lll-l(t,M) = ffF(t,z:v,t—t' ,&{/‘)f(t' ,E(V')dt'dzcv' s 12)

‘i”ﬁhere::F 'is defined by

’ F(t,&,t—t' ,35') =L,G(t-t

' 1 ‘
,35,35, ). (13)

7. The random function F, which depends on a but not on b, has the

g{prbpertyAthat <F>A==O. (This follows from the assumption that

o - <L1>Af=0.)A Note that F, as defined by Eq. 13, must generally be written

- wf:as a function of both t and t-t', and not simply as a function of

““t-t'." In order to justify writing F as a functiom only of t-t' it would

* _be necessary to assume that the operator L; commutes with time transla~-

ﬁh:;ions. “Tﬁis assumption, however, is too restrictive: As the following
,fénalysis'shows, it is the dependence of F on t, as well as on t-t',
“which is‘a key element in the evolution of the frequency spectrum of u.
% We shall.‘however, assdqe that the function F(t,ﬁ,siz) is stationary in t.

”*f;j By making a change of integration variable we can write Eq. 12 in

"the form

Lxﬁ(t,ﬁ)‘_?ffF_'(t,f‘;t',}‘f/')f(t‘t',ﬁ')dt'd};- (14)

S . o
Operating on Eq. 14 with Lo , as given by Eq. 10, and substituting

ff‘the result into Eq. 4 yiéids
a(t,x) = ~ef--feo (L' X, X OF (t-t",x',t",x")

x f(t-t'-t", x")dt'dx"dt"dx". (15)
“v % d AV .



The cross-correlation function R(T ,5,1) is defined by
R(T,x,y) = <u(t,x)u(t-1,y)>. - (16)
A aps ~s PV .

(In the case in which u is an m-component vector function, the cross-

correlation function Rij (1,x,y) 1is defined by
=< P >
Ryy(Toxy) = <uy (£,300u, (£=T,)>;

i=1,***,m, j=1,+,m, where the subscripts on u denote vector

components.) Upon writing u as the sum u=u+u in Eq. 16 we obtain
R(T,x,y) =<a(t:x)a(t“-{:y}>
M oA L% ar
+<u(t,x)8(e-1,y)> +<8(t,x)u(t-1,y)>
v v ~“ %

+<E(t,25)ﬁ(t—r,z)>. (17)

The two cross terms on the right-hand side of Eq. 17; i.e., the terms
involving products of u and u, vanish. This follows from the fact
that u is independent of a and that <G>A==O . Thus, for the first

cross term, we can write

<u(t,@ult - T,5)> = <<u(t,x)ut - 1,5)>,>p

= <u <u(t - > =
u(t,zf) u(t ‘l::z)>A B 0,
and similarly for the second cross term. Expressions for the remaining

two terms on the right-hand side of Eq. 17 can be obtained with the aid

. of Eqs. 11 and 15. These expressions are




W(EDE(E-T,3)> = [+ [G(",x,51)6(s",y,5")

W

x < f(t-t"' ,ﬁ')f(t-T—S' , y')>B dt'dﬁ'ds'dy' , (18)

~ ~ 2
<u(t,§)u(t"f,z)>=€ f"'fGO(tlsf‘l,ﬁ:)GO(S', > ')

A AN

X < F(t-t' ,2‘{’! ,tn’zsll) F(t‘:‘T-S' "‘}:’l ’Sn,ln)>A<f(t_t l__tn’zsl)

L4

x f (t‘-T—S 1_g" ’yn) >Bdt'd2{.,' ds 'dy' dt"d‘)i"ds"dy" . (19)

In deriving Eq. 19 use has been made of the fact that F 1s independent
of b and that f dis independent of a. The terms on the right-hand
.sides of Egs. 18 and 19 can be expressed in terms of the correlation

functions ¢ and Ry, v‘zhich are defined by

Q(T:BE; at-' ,35' ,s' ’M') = <F(t’3$_:t' >§')F(t—T9Y>S':y')>A ’ (20)
Ro (T,%,y) = <f(t,x)f(t-T,y)>.. (21)
W Av e d ~ B -—

Equation 17 can then be written

R(T,x9}') =§<T3x,Y) +§(T,X:Y), 122)
w v AV A AL AV
where
R(T,%,y) = <u(t,®m)ult-1,9)>= -+ [6(t",x,x")

XG(s',y,¥y")Ro(T-t"+s' ,35' ,z')dt'di'ds'dz' , (23)



f{(‘r,z,z) = <ﬁ(t,£)§(t;T »y)> = €2f~ <+ [Go(t" s X, %! )I
XGo(s',y,y")o(t-t"+s",x",y',t",x",s",y")
A v A v A
X Ro(t-t'+s'-t"+ S"’f," ,l")dt'd}s'ds'dl'dt"dg'ds"dA):"' . (24)
Note that u(t,gg, as calculated here, is indeed stationary in time,

as can be seen by referring to Eqs. 16 and 22-24,

The spectral density function S(w,;i,y) is defined by

S(w{E}Z)==[R(T’f}Z)eindT' (25)
With the aid of Eq.h?.z we can write
S(w,%,7) =5 (0,%,7) +5(w,5,3) (26)
where S and S are defined by
S(w,x,y) = IE(T,i,w)eide . @7
§(w,35,w) =f§(r,£,z)eiwrdr . (28)
To calculate S we insert into Eq. 27 the expression for R
given by Eq. 23 and carry out the integration over 7T,t', and s'.
The result is
S(w,x,y) = fju(w,ﬁ,ﬁ')ﬂ*(w,zﬁ')so(w,z{v' ,y'dx'dy', (29)

where we have defined

-10-



H(w,x,x") = [G(t,x,x")et®dt , (30)
} 1wt | -
So(@,%,y) = [Re(T,x,y)e™ dT _ (31)

*

and the symbol ( ) denotes a complex conjugate. Similarly, an
expression for S 4s obtained by substituting the formula for R

given by Eq. 24 into Eq. 28 and carrying out the integration over

T, t', s', t", and s". This procedure yields
P 2 1yp® '
§(w,x,y) = (7 /2m) [+ -+ [Ho (W, 2, x" ) (0,y,y")
xO(w-w', x', y|’w' ,x", -0’ ,7")S, (W' ,x“,y")dw"
NV Lo AN Ar -4 ~
X di‘,'dz'dﬁ"dz:' R i (32)

where we have defined H, and O by

iwt
Ho (w,x,%") = [Go(t,x,x )e™ dt (33)
0w, %, y,0,,%" »0_y") = [+ folr,x,y,e7,x 8"y ")
i(w'r+w+t'+w_s')
xe - drdt'ds"'. (34)

In deriving Eq. 32 we have made use of some known results relating the
Fourier transform of a product of two functions to the convolution of
the transformed functions.

We consider now the special case in which Li can be written as

a finite linear combination of the form

L1=Up(t,3§)Kp 3 pP=1l,°°', N, (35

-11-



(summation on repeated indices’ is implied), where the up's are random
functions, stationary in time and with zero mean (i.e., <up> =0
p=1l,°--,N), and the Kp's are determinate operators which commute
with time trsnslations. (Of particular interest, of course, is the

case in which the Kp's are differential operators with constant

coefficients.) Then, using Eq. 13, we can write

F(t,%,5,5) =up(t,§,)Gp(s,§sz) R L (36)

where we have defined

Gp(t,f,,gg')=KpG(t,35,§v') ;3 p=1,""",N. 37

Inserting Eq. 36 into Eq. 20 yields

o(1,x,y,t",x",8",y") =G (£',%,x7)G (s",y,3")

s

xT  (1,%, (38)

Pq( X,¥) _
where T is defined by
Pq )

r (T, =<u_ (t, t-T,y)> (39)

pq( X,Y) up( ,’i)“q( 1) A .

for p=1l,""*,N,q=1,***,N. mmncmmhﬁngEq.34wmmlm.38we

find that
0w x,y,0 4, x50 - ¥ =R (WX, xOH Wo, y,7")

x2o W,%,9) (40)

where we have defined

-12-~




H (Lu,x,x')=fG (t,x,x')eiwtdt (41)
RS P Al o

" for p=1,°-*, N, and

'zpq'(m ,x,y) = | Ty (T2 10Ty “42)

for p=1,""",N, g=1, °**, N. For this case the expression for R
is the same as that given by Eq. 23 ; however, the expression for § s

which is obtained by inserting Eq. 38 into Eq. 24, becomes
9 2 ' 1 T 1
R(T,fﬂ,z)-’ilf”’f(;o(t ’3’{‘,’3;)(;0(5 "v}:/,q,}:f)
xC¢ (£" x'.x™¢C S", ' y"T T-t'+s', x' '
P( ,w,w) q( A}L:]Z/) Pq( ’IW’ZI)
XRo(T-t'+s'-t"+s", x",y")dt'dx'ds'dy'dt"dx"ds"dy" . (43)
w w oy w w .

Similarly, the expression for S for this case is the same as that
given by Eq. 29, whereas the expression for S , which is obtained by

substituting Eq. 40 into Eq. 32, becomes
~ 2 *
S(uw,x,y) = (e /2m) [+ - [Ho(w,x, x")Hg (0, ¥, ")
W oA w o w ~w o
%
x[2pq @ x5 ) *H 0 1 XDE @, 3t ™)
X Sp (w, x" ,y")] dx'dy'dx"dy" . (44)
W w o W w
The notation ( ) x( ) denotes a convolution with respect to w ; i.e.,
frgw)=[f(w-w)gwddw' .

Whenever the convolution symbol appears inside brackets, as in Eq. 44,
it is to be understood that only the terms inside the brackets are

involved in the convolution.

-13-



Referring again to the geﬁeral analysis (i.e., the analysis leading
to Eqs. 23, 24, 29, and 32), an important special case occurs when the
operators Ly and M commute with space, as well as time, translatiomns.
Then, in an obvious change of notation, we can write the Green's func-
tions Go(t—t',ﬁ,;‘g) and G(t—t',zcv,zg_’") in the form G°(t"t"35—3‘«')

and G(t-t',x-x"), where Gy and G are solutions of

LoGo (£,3) = 8()8(x) (45)

and
MG(t,x) = 8(t)S(x) . ~ (46)

In addition, the function F is now defined by
F(ts}s,t_t"}i—zs_'):lqc(t —t's}"—i')s (47)

and is assumed to be stationary in the first two variables.
By making some changes of integration variables in Egs. 11 and
15, we can write the expressions for 4 and u for this case in

the form
u(t,x) = [fG(t", x")E(e-t', x-x")dt"dx’' , (48)
G(taﬁ) =—€f“‘fG0(t's‘§‘)F(t"t'ai_ﬁ'st":&")
Xf(t—t'_t"’f,_i'—ff.") dt'd}i'dt"d‘g{""'. (49)

From Eqs. 48 and 49 expressions for R and R can be obtained in a

- manner similar to that used in deriving Eqs. 23 and 24. The result is

R(T,x,y) = [---[G(t", x")G(s",y")

xRo(-r—t'+s',x-x',y—y')dt'dﬁ'ds'dy' R (50)

14~




2

i(’r,}v,w) =€ j:.‘fGO(t"ﬁ')GO(S"Z))

xc])(—r_tl+sv , y—x+x' _yr’ t",x",s",y")
A N AL AN A vy

xRo(T—t'+s'-t"+s",~}5—3‘<}' -A}f,",z-

Z" _Z")dt'd}f’lds'd’z"

X dt"d})j}"ds"dy" s

(51)
where, for this case, the function ¢ is defined by
O(r,E,t,x",8",y") = <F(t,x,t',x )F(t~-1,x+E,8',¥")>, (52)
Expressions for S and S for this case are obtained by inserting
the formulas for R and R given by Egqs. 50 and 51 into Egs. 27 and
28. The result is
S(w,x,9) = [/ H(w, x )" (0,5")So (w,x-x",y-y") dx'dy" , (53)
P 2 ' * [
S(w,x,y) = (e /2m) [+ [ Ho(w, X" )Ho(w,y")
*Ow-w',y-x+x' -y’ w',x"~0",y")
X So(w' ’z“’__xl __xll,y__yl_yn)dﬂ}sldyldxndylldwv . (54)
where
iwt
Ho(w,x) = [Go(t,x)e " dt , (55)
H(w,zs) = f G (t ,E)elwtdt , (56)
e(w,€3w+sxsw_s}') = f' ° ’f (T, E,t,x,s,y)
~» fand ~s Ay A EY s
xel(wr+w+t+w_s)d_[dtds . (57)

~-15-




The analysis leading to Eés. 50, 51, 53, and 54 can be specialized
further by considering again the case in which the operator L; can be
written in the form given by Eq. 35, where now the up's are stationary
in space as well as in time, and the Kp's commute with both space and

time translations. Then from Eq. 47 we have

F(tszslst"t" }'-35') =UP(C,X)GP(t-t',X-X') 5 (58)
where
Gp(taﬁ) EKPG(t’z‘{) ; p=1,""",N. (59)

Substituting the expression for F given by Eq. 58 into Eq. 52 yields
O(1,8,t,%,5,y) =T (T,E)G (£, )G (s,y) » (60)
where
Toq (T2 = <u (6,Xu (E-T, X+ £)>, | (61)
for p=1,***,N,q=1,***,.N. Upon combining Egs. 57 and 60 we obtain

b b N2 =Z 3
O(w,é W45 X5 W z) pq(w 5)

*Ho (e, O (W_,y) 5 p=1,""", N, q=1,""",N, (62)
where
iw T '
Z @B = T (r,8)e ™ drs p=1,or, N q=1,000, N, (63)
H @) = [ (¢, e s p=1,+, . (64)

-16-




With the aid of Eqs. 51, 54, 60, and 2 we can write the formulas for

i and § for this case in the form
-~ 2
R(tyzog) =€ [or[Golt' 560 (s",y1)6 (£", X6, (s",3")

X rpq(‘l’ —t'+s',3” —‘}“{'+x'-z')R° (t-t"+s'-¢t" +S"’},"E"’j§',l-}"—y")

A AL AA

xdt'dx'ds'dy'dt"dx"ds"dy" , : (65)

S(wxy) = (€7 /2m) [+ [ Ho (@, x)HG (w,y")

*
'oy') #H (,x"E (w,5")

' ! X - ‘ - ! o Yl * F IR ] )
So(w,x-x"~x",y-y l)]dx dy'dx"dy" . (66)

A A s AN ALl

The formulas for R and S for this case are given by Egs. 50 and 53.

All of the formulas for R and S given in this section are accurate

2

to order €°; i.e., the error in them is of order €£%. This is a con-

sequence of the dropping of terms of order €3 4in Eq. 3 and €2 in

Eq. 4 (note that u is of order €) , and the vanishing of the cross

terms in Eq. 17.

It should be pointed out that, for practical purposes, it is
usually convenient to assume that all random processes under considera-
tion are ergodic, as well as stationary, in time, in which case the

average denoted by < > can be regarded as a time average.

II. APPLICATION
In order to show how the results obtained in the previous section
may be applied to a particular case, we use them here to calculate the

frequency spectrum of fhe scalar wave field radiated by a random point
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source in a three-dimensional time-dependent random medium. The

starting point of this analysis is the scalar wave equation

(%82 -V)u=t£, (67)
where u 1s the wave function, f is the source term, and c¢ 1is

'the local propagation speed of small disturbances of the medium. All

quantities under consideration are assumed to be functions of t and
X, where t 1is time and X [= (xl,xz,xa)] is a three-dimensional
spatial coordinate.

Both the propagation speed ¢ and the source term f are, in
general, random functions; however, as discussed at the beginning of
Sec. I, these functions are assumed to be statistically independent
and are to be regarded as being dependenﬁ on parameters a and b,
respectively, which are elements of differcnt sample spaces A and
B. In addition, we assume that the random fluctuations of the medium
are stationary in time and space and represent a small perturbation

of a uniform state. Thus we write
e(t,x) =co[L+en(t,»)] , (68)

where ¢y 1is a constant, € 1s a small parameter which is a measure
of the magnitude of the random fluctuations of the medium, and p(t,}g
is a random function, stationary in t and X, with zero mean and unit
2
variance; i.e., <u>, =0, <u >, =1,
A A
As a consequence of the assumptions stated above, the relevant

formulas for calculating the functions R and S for this case are

given by Eqs. 50, 53, 65, and 66, along with Eqs. 22 and 26. (Actually,
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since we are interested here only in the function S, we need only be
concerned with Egqs. 53, 66, and 26.) In order to make use of these
equations we need to calculate the functions Gy, G, and G;, as well

as their transforms Ho, H, and H;. We turn now to the calculation of

these functions.

Upon substituting Eq. 68 into Eq. 67 and expanding in powers of

€ we can write the latter equation in the form
(Lo+e Ly+e Lot du=f, . (69)

where the operators Lg, L, and L, are given by

Lo=cy 3, - V%, (70)
-2 2 }

Ly =-2co uat R (71)

Ly = 3c;2uzaf: . ‘ (72)

The function Gy for this case, which corresponds to a spherical
pulsed wave propagating in a uniform medium, is obtained by solving
Eq. 45, with Ly given by Eq. 70, subject to the initial condition

Go=0 for t<0. This yields the familiar waveform given by
-1 -1 ' '
Go(t,x) = (4mx) "S(t-co %) . : (73)

By inserting the expression for G°(t"t"35°251)’ as given by Eq. 73,
into Eq. 7 , carrying out the integration over t', and changing the

. . . . ' ' -1
. spatial integration variable, we can express the operator Ly in

the form
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Lo (e, = (4m 7 £ (e - o5 £, 48 )dE (74)

The function Ho(w,g) for this case is easily obtained by transforming

EqQ. 73 according to Eq. 55. The result is

Ho (0,x) = (4m) " %, | (75)

where k=uw/cy.

The function G(taﬁ) for this case is determined by Eq. 46, where
the operator M 1is given by Eq.'s . With the aid of these equations,
along with Eqs. 70, 71, 72, and 74, we can write the equation for

G(t’39 in the form

-2.2 2 -2 -1
(co 3, -V*)G(t,0) +€ {33 6, (t,) - (nep)

X JE | T 6800 e (£ = €3 g ) - 20 (36,8

« Lttt
XGy o (t= s E,x+E) +T_ (5 E,0)C, (&~ cZ’&yi)]d%}
= 8(t)6(x) , 76)

where the subscripts denote derivatives, and we have defined

T(t,8) =<u(t,ulc-1,x+8)>, . 77)

The initial condition for G is that G=0 for t<0,.

The procedure by which Eq. 76 is solved for G(t,ﬁ) is described
in Appendix A. Since we wish only to calculate the function S, we
need only the transform H(w{§) of G(t,x), as defined by Eq. 56.
For the case in which the medium is statistically isotropic '[i.e.,
when F(T,EQ==P(T,E)] » this quantity is given by Eq. All, which we

rewrite here in the form
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H(w,x) = C(k) (4m) 1 1€ (78)

where

C(k) =1+ 26V (k) . (79)

The function Y (k) is given by Eq. Al2, and Kk is given by Eq. AlO.

The functions Gl(t,ztv) and H;(t,ﬂ}‘c,) are determined by Egs. 59

and 64, where, for the case under consideration, N=1 and, in view of

Egs. 35 and 71, ul(t,}v) =u(t,3£) and K; =—2c'o—23:_. It follows that

Gy (£,%) =-2¢7°G, (t,%) , | (80)
and hence that
Hy (,%) = 2k"H(®,X) - (81)

The source term f 1is assumed to represent a point source in

space but one which is random in time. Accordingly we write
£(t,x) =g(t)8(x) , (82)
where g(t) is astationary random function with zeromean. Equation 21 thenyields
Ro (T,X,y) = Po (1)8(x)8(y) , (83)
where Py(r) is defined by
Po(T) =<g(t)g(t-T)>, . (84)
Upon transforming Eq. 83 according to Eq. 31 we obtain
So(w,x,y) =Q W8 (x)8(y) , (85)
where we have defined

Qow) = [ Po(r)e™®Tar . (86)
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Expressions for S and S can now be obtained by substituting

the formula for So .given by Eq. 85 into Eqs. 53 and 66 and carrying

out the integration over x' and y' in Eq. 53 and over x" and y"

w w aw/ w

in Eq. 66. 7The result is

w1

w w

W,%,) = Qo @HW,DE W,7) , (87)

S(w,x,y) = (Zez/ﬂcg)ff}lo(w,icv')Ht(w,ziu')
_y") *w“Q°(w)H(w’ﬁJ—i’)ﬁ*(m’l_l')} df;dzJ ’ (88)'
where 2z is given by

2(,8) = f r(r,i)ei‘“d-c : (89)

and we have used Eq. Si to substitute for H; in terms of H. The
spectral density function S(w,ﬁﬁz) can now be calculated in terms
of known functions with the aid of Egqs. 26, 87, 88, 75, and 78.

The expression for S and S given by Egqs. 87 and 88 can be
considerably simplified in the case of high-frequency waves; i.e.,
when the characteristic frequency of the source is much greater than
that of the medium. In considering this case we shall restrict our

attention to the power spectrum Q(w,z) s Which is defined by

Qw,%) = $(w,%,%) . (90)
From Eq. 26 we have |
Qw,x) =qw,x) +Qw,¥) , (91)
where
Qw,x) =5(w,%,x) , (92)




a(w’;}i) Eg(w,z(v,x) . (93)
Eqs. 87 and 88 yield

Q(w,3) = Qo) |H(w,x)|", (94)

Qw,x) = (2" /meq) ff Ho(m,g)Hﬁ(w,‘Z’)'
x' [Z(“”SS",X') * w“Qo(w)H(w,A}i— A}i')H*(w,ﬁ—z' )] dic/'dz' . ' '('95')
After changing the integration variables in Eq. 95 we can write
Qw,x) = (2% /meg) [ Ho(w,g—g')Hf(w,i-gg")
X [Z(m,g‘ -x") *tho(w)H(w,z:v')H*(w,z")] dﬁ'd}v" . (96)

- The first step in the high-frequency analysis is to obtain an
asymptotic expansion, valid for large k, for the quantity k . This
is eésily accomplished by integrating by parts in Eq. A10, after sub-
stituting for X from Eq. A2 and recalling that F(T,§)==F(T,£)

for the isotropic case under consideration. This yields the approximation
kK=2k+ia, 97)

where
o=c’k’s. (98)

The quantity £ is a characteristic length scale associated with the

medium, and is defined by

L= [ T(es'E, By (99)

-23-



With the aid of Egqs. 75, 78, and 97 we can write Eqs. 94 and 96 in

the form

Qw,x) = Qo (w) lc)?| (lnr:c)"ze_-zo‘x , (—--100)
te(lx-x'| - lx-x"])
Ay - 1r(41r)-[/]x x' = |x - x"x"
[Z@}{—X)*k[C&ﬂ(%(&lk& - %"
xe—a(x +X")A]d§' ax" , . _ (1015
where, from Eq. 79,
lc(k) |® = 1+ 46 Rew(k) . _(i02)

L
(In deriving Eq. 102 terms of order € were dropped.)
The integral over ﬁj and 5? in Eq. 101 has been evaluated using
the forward-scatter approximation. The details of that calculation are

given in Appendix B. The resulting approximate expression for Q(w,g)

can be written
G, = G W@ lc) |2 (- e Qo w) ] (103)
where W 1s defined by
W(w) = (412) 7 2 (w,k) (104)

and Z is given by Eq. Bl7.
An expression for Q(w,ﬁ) can now be obtained by substituting the

formulas for a(w,ﬁ) and a(w,f) given by Eqs. 100 and 103 into Eq. 91.
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In so doing we simplify matters'slightly by making the approximation
2 ,
|C(k)l =1. After dividing through by the spherical-spreading term

(lnrx)_.2 we obtain finally

(41x) *Q(w, ) = &0 () + [W(w)* (L - €y g, (w)] (105)

It should be pointed out here that, although the error in the general
formulas for R and S given in Sec. I is of order €®, the error in

Eq. 105 is of order €2. This is because some terms of order €2 were

dropped in the derivation of this equation.

We see from Eq. 105 that, as ax->0,

(4m) *Q(w,%) > Qo (@) - (106)

Thus, as € and/or x (the source-field point distance) goes to zero,
the wave spectrum (with the spherical-spreading term factored out)
approaches the source spectrum, as we would expect. 1In the opposite

limit, i.e., as ax-+<«, Eq. 105 shows that

(lmx)zQ(w,gg) +W*x Qo (w) . (107)

We see therefore that the wave spectrum (again apart from the sphefical—
spreading term) tends to a limiting form as X-o., This limiting form,
which is given by the right-hand side of Eq. 107, is referred to here

as the fully-developed spectrum.

It may be verified by direct integration of Eq. 105 that

) Y Qw,x)dw= [ Qo @dw . (108)
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In the derivation of Eq. 108 we have used the fact that

f.W(w)dw =1, ) (109)

Equation 108 shows that the total signal power; i.e., the area under
the spectral curve, normalized by the spherical-spreading term, is

conserved.

We can simplify Eq. 105 further by assuming that the band-width
of the source is so small that, insofar as the convolution integral is
concerned, Qg(w) can be regarded as a delta function. Accordingly we

replace Qy(w) 1in the convolution term by
Ao[8w-we) +8(w+ug)]

(since Qo must be an even function), where Ag>0 and wp>0. We can

also write, in this case,

-20% —-2014X
e Qow) xe 0

QO ((x)) ’

where ao==€2kgl and kg =wg/co . Then Eq. 105 becomes

—-205X —2060X

(Urx)2Qu,x) =e” Q) + (1-e QW) , (110)
where

QW) = Ao [W(w - we) +W(w+wg)] + (111)
Note that, as a consequence of Eq. 108, we must have

[, (w)dw=[Q W)dw , . (112)

and hence, in view of Eq. 109,
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Ao =3[ Qo (w)dw . (113)

By introducing a "broadening parameter" B, defined by

B= i- e_zaox ’ '. (114)
we can write Eq. 110 in the form
(4mx)2Q(w,3) = (1-8)Qo () +BQ_ () . (115)

Thus we see that the wave spectrum (with the spherical-spreading term
factored out) can be regarded in this case as a linear (in.B)
interpolation between the source spectrum Qg(w) and the fully-
developed spectrum Qm(w).

In order to show the broadening phenomenon graphic#lly, numerical
calculations of the quantity (an)zQ(w,K) as a function of w have
been made for various values of B wusing Eq. 115. For this purpose the
source spectrum Qp(w) was chosen to be a Gaussian'function, sharply
peaked about a frequency wy cailed the carrier frequency. The function
W(w) was also chosen to be a Gaussian, less sharply peaked, centered in
the first instance about w=0 and in the second about a frequency
for which 0<{Qg<<wg.

The results of these calculations are plotted (in dimensionless
coordinétes) in Figs. 1 and 2. All of the curves in each figure are plotted
on the same scale. Note that in each figure the curve iabeled B=20
corresponds to the source spectrum, the curve labeled f8=1 corresponds
to the fully-developed spectrum, and those labeled with values of 8
between zero and one correspond to intermediate stages in the broadening

process. Both sets of curves show clearly the broadening of the wave
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spectrum with increasing B . The two sets differ, however, in one respect.
The results shown in Fig. 2, for which the function W(w) is peaked at a
non-zero value of w, are marked by the appearance of side lobes on the
broadened spectrum. In Fig. 1, by contrast, for which W(w) is peaked at
w=0, no such side lobes appear.

The results obtained here appear generally to be in qualitative agree-
ment with observation, as can be seen by, for example, comparing Fig. 1
with Fig. 11 of Ref. 1 or Fig. 3 of Ref. 2. Note moreover that the observa-
tions reported in Refs. 1 and 2 indicate conservation of total signal power,

which is also consistent with the present results (ef. Eq. 108).
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LIST OF FIGURES

Fig. 1. Dimensionless wave spectrum (with the spherical-spreading term
factored out) vs. dimensionless frequency for various values of the
broadening parameter . The calculations are based on Eq. 115. The

i mark on the horizontal scale corresponds to the carrier frequency

wg . The function W(w) dis peaked at w=20.

Fig. 2. Same as Fig. 1, except that the function W(w) 1is peaked at

a non-zero value of w.
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APPENDIX A. CALCULATION OF G(t,x) AND H(w,x)
. P d

The function G(t,z) of Sec. 2 is determined by Eq. 76, together
with the initial condition G=0 for t<0. An equation for the trans-
" form H(w,gg of G(t’ﬁ) , as defined by Eq. 56, is obtained by trans-

forming both sides of Eq. 76. The result is

[ V" + L+ 36K JHw, ) + "/ [ g1t
x X(k,QH(m,zs+§v)d§v= —6(35) R (A1)

where the function X(k,E) is defined by
2., -1 -1 -1
X(kai) =k F(Co g»é) - ZikCO r'[ (CO E:E)
-2 -1
- €3 T (€5 'E,E) (a2)

In order to solve Eq. Al we introduce the spatial Fourler transform

ﬁ(w,gx) of H(w,x) , defined by

(o, = [H@,xe B Xy, (a3)

t

where m.x
A

~

3
z: moX, . Transforming both sides of Eq. Al according to
i=1

the prescription given by Eq. A3 and solving for i yields

fw,m = [D0,m) 17", (a4)
where we have defined
—1eikE

D(k’E) =n - a+ 3¢k’ - (Szkz/'ﬂ)f &

x X(k,&)eiE'ng ) | (A5)
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With the aid of Eq. A4 we can now express H(wig) as an inverse transform;

i.e., we write

-1
H(w,x) = 61 [ [p,m] e B Bay | (46)

-~

In order to proceed further we assume that the medium is statisti-
caily isotropic, so that we can write (in an obvious change of notation)
P(T,§)==F(T,£). Then, in view of Eq. A2, we can also write X(k,ég =
X(k,E) . The angular integration in Eq. A5 can now be carried out,

yielding

@ 1kE

D(k,m) = D(k,m) =m” - (1+3e*)k”" - 462k2m_1f0 X(k,E)sin mEdE . (A7)

)

Upon substituting the expression for D given by Eq. A7 into Eq. A6

and carrying out the angular integration we find that
2 (-1, S
H(w,x) = (27°x) jo [D(k,m)]  msinmxdm. (A8)

The integral in Eq. A8 can be evaluated by means of contour integration,

after which the expression for H can be written

1 ixKx
e

H(w,x) = (2mx) [D_(k,<)] 'k ) (A9)

Here Dm denotes the derivative of D(k,m) with respect to m
(regarded now as a complex variable), and K 1is the root of the
dispersion equation D(k,k) =0 which has the property that k- k

as € ->0. To lowest order in € , this root is given by

k=kjl+ ze’[3+ a7 ™o (, &) sin kE ag] ). (A10)
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Upon substituting the expression for K given by Eq. Al0 into Eq. A9,

after calculating Dm using Eq. A7, we obtain

H(w,x) = [1+ 2% (1) ] (ama) 7T (a11)
where
b = [ X (k,0) (cos ke - SIBEE Jea (412)

and higher—-order terms in € have been dropped.

The function G(t,ﬁ) can now be obtalned by applying the inverse
Fourier transform to Eq. All. We shall not carry out this calculation
here, however, since we need only the function H(w{ﬁ). This calcula-

tion was carried out in Ref. 21 for the case of a time-independent medium.
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" APPENDIX B.

By making explicit the w'

order of integration we can write the expression for Q in the form

Q(w,z&) = [Ze:z/ﬂ(lrn)“]‘['k"‘lc(k')|2 Qo(w')I(w,ﬁ;w')dw' ,

where the integral I is defined by

X

Ak(x-x'| - [x-x"D
I(wyxiw') =ﬂ Z(w-w' ,35" -x")
~ I,?i-,}f,'lx' |2§,-,§,"| 1" [aad

' 1 t ' "
xeik (x'-x )e—a (x'+x )dx'dx" )

s

Here k'=w'/cy and o' =e’k'?p. Equation B2 can be written in the

alternate form

ik! (Ix x'|+x) e—ik'(lzcv—x"l-i-x")
I(w,x;0'") ff =
|x x |x!'

|x xlx

X Z(w-w',,zi" - x')ei(k_ k') li—i'le—i(k—k') lfa—f:'l

! 1 "
X e a' (x' +x") dx'dx" ,
~ ~
which is more convenient for the application of the forward-scatter

approximation.

We begin the analysis by substituting for Z din terms of T in

mEq. B3 with the aid of Eq. 89 . By changing the order of integration

in the resulting expression for 1 we get
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integration in Eq. 101 and changing the

(31)

(B2)

(33)




X
A

I___fei(w—w')'r[/' eik'(lzf,_,}f./""'x') e-ik'(l/}\:v—g'l+x")
lx_xrlxv lx__ nlxn
PV Y ‘Av

xT(ryx - x) et KT ED 2ot 0=k - x|

P P "
xe & (" +x )dx'dx"dT . (B4)
~ V. .

Next we use Eq. 77 to substitute for T in terms of M in Eq. B4.
Upon reversing the order of the averaging and integration (over ,35' and
35") processes, we note that the double spatial integral can be split

into a i)roduct of two integrals. Equation B4 can then be written

i(w-w')T
I=/e ( ) <J>, dt (B5)
where
I=33_ , (B6)
- ik'(lx—x"'*'X') ' ' 1ot
J+=/ £ = ue,xel kK Mx-x'l o'x dx', (B7)
|x-x'|x'
and

-ik'(]x—x"|+x") oLt 1"
J =_/e = H(t-1,xMNe L=k |x- x|

}x-x"lx"
ey Ty
xe * Fax" | (B8)

We can now apply the forward-scatter approximation, as discussed in

Ref. 22, to the integrals J+ and J_. This yields
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1 ’ _ ' _
3,= Crifktee® Xf(,xu(t,o,o,x')ei<k k') (x-x")

t ! -
xe X X axt+ox'”?), (89)

3_=-(ami/ktx)e XX (e - 1,0,0,xme T TED oo

ey Tt -
xe ¢ X ax"+oxt"?) . (B10)

In the derivation of Eqs. B9 and B1l0 we.have set x= (0,0,x) . This
entails no loss of generality since the medium has been assumed sta-
tistically isotropic.

Conditions for the validity of the forward-scatter approximation
are givén in Ref. 22. 1In the present context these conditions take

the form

k‘l" << x << kl,?,z , (B11)

where k1 is a characteristic wavenumber associated with the wave field.
By substituting the expressions for J+ and J_ given by Egqs. B9

-3
and B10 into Eq. B6, dropping terms of order k' , and averaging, we

obtain

<] >A= (lmzlk' zxz)joxfox I'(t,x" _x,)ei(k— k') (x" - x")

ey (M 1
x @@ (K F X" g (B12)

The double integral in Eq. B12 can be partially evaluated with the aid

of the coordinate transformation E=x"-x', n=x"+x'. The result is
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<J>A - ([mz/a'k‘ 2x2)fo‘x F(T ,£) (le—ou;; _e-za'x eou E)
x cos [(k-k")E] dE . ' (B13)

In deriving Eq. B13 we have made use of the fact that T(1,§) 1is even
in £.

We can now get a series expansion for <J> in powers of «a'

A
(which is equivalent to an expansion in powers of 82) by expanding the
terms exp(a'¢) and exp(-a'f) in Eq. B13 and integrating term by

term. This yields

<>, = (4% [a'k" *x%) n§0 -1™1- (-1)“;‘2“"‘] (@'"/n!)

X jo"g“r(r,g) cos [(k-k')E] dE . (B14)

When x>>2 the integration in Eq. Bl4 can be extended to +
without introducing significant error into the integral. Upon dropping

all but the first term of the resulting expansion we obtain

-20'x

<>, = (4 fa'k 5P (1- e )fomI‘(T,E_',)cos[(k—k')E]déj . (B15)

An approximate expression for the integral I can now be obtained

by éubstituting the result for <J>A given by Eq. B1l5 into Eq. B5 and

carrying out the integration over 7. This yields
I= 2%k 2%) (L~ 2% ) Zw-w', k-k') , (316)
where we have defined
Z(w,V) = 2 jo‘” Z(w,E) cos VE dE . (B17)

-~

Upon combining Eqs. Bl and Bl6 we obtain the expression for Q given

by Eq. 103.
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